Stereoselective organic reactions promoted by immobilized chiral catalysts in continuous flow systems

نویسندگان

  • Alessandra Puglisi
  • Maurizio Benaglia
  • Valerio Chiroli
چکیده

The immobilization of the catalyst on a support with the aim of facilitating the separation of the product from the catalyst, and thus the recovery and recycling of the latter, can be regarded as an important improvement for a catalytic process. However, a system where a catalyst must not be removed from the reaction vessel is even more attractive: in continuous flow methods the immobilized catalyst permanently resides in the reactor where it transforms the entering starting materials into the desired products. The retention of the catalytic species inside the reaction vessel can be achieved by different techniques ranging from ultrafiltration through a MW-selective membrane to immobilization on different supports. In this review we will discuss the most significant examples of stereoselective reactions promoted by immobilized chiral catalysts and performed under continuous flow conditions, with particular attention to the more recent contributions of the last few years.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(methylhydrosiloxane)-supported chiral imidazolinones: new versatile, highly efficient and recyclable organocatalysts for stereoselective Diels-Alder cycloaddition reactions.

Poly(methylhydrosiloxane) (PMHS) supported organic catalysts promoted the Diels-Alder reaction of dienes with α,β-unsaturated aldehydes, also in pure water, in yields and enantiomeric excesses comparable to those observed with the non-supported catalysts (up to 93% ee). Recycling of the catalysts was performed with no loss of enantioselectivity for at least five reaction cycles.

متن کامل

Combining multi-catalysis and multi-component systems for the development of one-pot asymmetric reactions: stereoselective synthesis of highly functionalized bicyclo[4.4.0]decane-1,6-diones.

We have developed a direct amine/acid-catalyzed stereoselective hydrogenation of a variety of Wieland-Miescher (W-M) ketones, Hajos-Parrish (H-P) ketones and their analogs with organic hydrides (Hantzsch esters) as the hydrogen source. This astonishingly simple and biomimetic approach was used to construct highly functionalized chiral bicyclo[4.4.0]decane-1,6-diones in a diastereoselective fash...

متن کامل

Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.

The discovery and development of conceptually new chiral bifunctional transition metal-based catalysts for asymmetric reactions is described. The chiral bifunctional Ru catalyst was originally developed for asymmetric transfer hydrogenation of ketones and imines and is now successfully applicable to enantioselective C-C bond formation reaction with a wide scope and high practicability. The depr...

متن کامل

Special Issue on Ruthenium Complexes.

The organic chemistry of ruthenium has been one of the most vigorously growing research areas over the past decades. Considerable effort has been extended towards the design and application of a broad series of ruthenium complexes, which culminated with the development by Ryoji Noyori (2001 Nobel Prize for Chemistry) of chiral ruthenium catalysts for stereoselective hydrogenation reactions [1],...

متن کامل

Stereoselective Reduction of Imines with Trichlorosilane Using Solid-Supported Chiral Picolinamides.

The stereoselective reduction of imines with trichlorosilane catalyzed by chiral Lewis bases is a well-established procedure for the synthesis of enantio-enriched amines. Five supported cinchona-based picolinamides have been prepared and their activity tested in a model reaction. The comparison of different supporting materials revealed that polystyrene gave better results than silica in terms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013